Developing Fuel Efficiency and CO2 Emission Maps of a Vehicle Engine Based on the On-Board Diagnostic (OBD) Approach

Author:

Rosero Obando FredyORCID,Rosero XavierORCID,Mera ZamirORCID

Abstract

A vehicle interacts with the road, other vehicles, and traffic control devices in real traffic conditions. The level of traffic influences driving patterns and, consequently, this can affect the vehicle´s fuel efficiency and emissions. This study aims to develop engine maps of fuel consumption and CO2 emissions for a light vehicle operating under real traffic conditions. A representative passenger vehicle of the Ecuadorian vehicle fleet, powered by gasoline, was selected for the experimental campaign that was developed on a test route designed according to real driving emission (RDE) regulation. An on-board diagnostic (OBD) device was used for recording in real-time engine and vehicle operating parameters. Moreover, CO2 emissions were estimated using the fuel rate registered from the OBD system of the vehicle This study proposed a novel methodology for developing two-dimensional contour engine maps based on OBD data.  The result showed that the vehicle engine operated in real traffic conditions with a brake thermal efficiency (BTE) of 27%, a brake-specific fuel consumption (BSFC) of 275 g/kWh, and a carbon dioxide (CO2) energy-emission factor of 716 g/kWh. In terms of distance, the CO2 emission factor for the tested vehicle was approximately 190 g/km. Overall, this study demonstrates that the OBD approach is a potential method to be used to assess the fuel consumption and emissions of a vehicle operating under real-world traffic conditions, especially in Latin American countries, where portable emission measurement systems (PEMS) are not readily available.

Publisher

Universidad UTE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3