10.21609/jiki.v4i1.151

Author:

Purwarianti Ayu,Yusliani Novi

Abstract

Fokus dari penelitian ini adalah untuk mengembangkan data dan sistem Question Answering (QA) Bahasa Indonesia untuk pertanyaan non-factoid. Penelitian ini merupakan penelitian QA non-factoid pertama untuk Bahasa Indonesia. Adapun sistem QA terdiri atas 3 komponen yaitu penganalisis pertanyaan, pengambil paragraf, dan pencari jawaban. Dalam komponen penganalisis pertanyaan, dengan asumsi bahwa pertanyaan yang diajukan merupakan pertanyaan sederhana, digunakan sistem yang berbasis aturan sederhana dengan mengandalkan kata pertanyaan yang digunakan (“apa”, “mengapa”, dan “bagaimana”). Paragraf diperoleh dengan menggunakan pencarian kata kunci baik dengan menggunakan stemming ataupun tidak. Untuk pencari jawaban, jawaban diperoleh dengan menggunakan pola kata-kata khusus yang ditetapkan sebelumnya untuk setiap jenis pertanyaan. Dalam komponen pencari jawaban ini, diperoleh kesimpulan bahwa penggunaan kata kunci non-stemmed bersamaan dengan kata kunci hasil stemming memberikan nilai akurasi jawaban yang lebih baik, jika dibandingkan dengan penggunaan kata kunci non-stemmed saja atau kata kunci stem saja. Dengan menggunakan 90 pertanyaan yang dikumpulkan dari 10 orang Indonesia dan 61 dokumen sumber, diperoleh nilai MRR 0.7689, 0.5925, dan 0.5704 untuk tipe pertanyaan definisi, alasan, dan metode secara berurutan. Focus of this research is to develop QA data and system in Bahasa Indonesia for non-factoid questions. This research is the first non-factoid QA for Bahasa Indonesia. QA system consists of three components: question analyzer, paragraph taker, and answer seeker. In the component of question analyzer, by assuming that the question posed is a simple question, we used a simple rule-based system by relying on the question word used (“what”, “why”, and “how”). On the components of paragraph taker, the paragraph is obtained by using keyword, either by using stemming or not. For answer seeker, the answers obtained by using specific word patterns that previously defined for each type of question. In the component of answer seeker, the conclusion is the use of non-stemmed keywords in conjunction with the keyword stemming results give a better answer accuracy compared to non-use of the keyword or keywords are stemmed stem only. By using 90 questions, we collected from 10 people of Indonesia and the 61 source documents, obtained MRR values 0.7689, 0.5925, and 0.5704 for type definition question, reason, and methods respectively.

Publisher

Faculty of Computer Science, Universitas Indonesia

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3