Assessment of the Antifungal Activity of PMMA-MgO and PMMA-Ag Nanocomposite

Author:

Arf Awder NureeORCID,Kareem Fadil AbdullahORCID,Khdir Younis KhalidORCID,Zafar Muhammad SohailORCID

Abstract

Orthodontic acrylic resin is used in the construction of orthodontic appliances. It lacks antimicrobial properties and is prone to microbial infection. So, the infection associated with it can be reduced via modification of orthodontic acrylic resin with nanoparticles (NPs) incorporation. The study directed to evaluate the antifungal properties of modified orthodontic acrylic resin incorporated with magnesium oxide (MgO)-NPs and silver (Ag)-NPs. NPs were mixed with polymethylmethacrylate (PMMA) in ethanol-assisted mixing method. Disc samples (10 mm in diameter and 2 mm thick) of PMMA-MgO, PMMA-Ag nanocomposites and PMMA alone (as control) were prepared. Then, C. albicans was isolated and identified clinically through taking swabs from acrylic denture base orthodontic appliances, cultured on a Sabouraud Dextrose Agar medium, followed by transferring on HiCrome™ candida Differential agar which is a selective and differential medium to distinguish distinct Candida species. The polymerase chain reaction was performed and the amplicon was separated by 2% gel electrophoresis and then visualised by ethidium bromide. DNA sequencing was performed on the sample at Sanger sequencing/ ABI 3500. Antifungal activity of PMMA-MgO and PMMA-Ag (1%, 3% and 5% of NPs) was conducted through disc diffusion assay and colony forming unit counts. The result showed a decrease in the number of adhered Candida albicans (C. albicans) of all concentrations of both nanocomposite and the decrease was statistically significant (P<0.05) in all experimental groups except MgO-NPs 1% and 3%. Increasing the concentration of NPs was associated with decrease in the adhered C. albicans. It was concluded that PMMA-MgO and PMMA-Ag nanocomposites showed anti-adherence activities against clinically isolated C. albicans in concentration dependent manner.

Publisher

Sulaimani Polytechnic University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3