Author:
Ahmed Ahmed Abdullah,Hasan Harith Raad,Hameed Fariaa Abdalmajeed,Al-Sanjary Omar Ismael
Abstract
Recognizing the writer of a text that has been handwritten is a very intriguing research problem in the field of document analysis and recognition. This study tables an automatic way of recognizing the writer from handwritten samples. Even though much has been done in previous researches that have presented other various methods, it is still clear that the field has a room for improvement. This particular method uses Optimum Features based writer characterization. Here, each of the samples written is grouped according to their set of features that are acquired from a computed codebook. This proposed codebook is different from the others which segment the samples into graphemes by fragmenting a certain part of the writing known as ending strokes. The proposed technique is employed to a locate and extract the handwriting fragments from ending zone and then grouped the similar fragments to generate a new cluster known as ending cluster. The cluster that comes in handy in the process of coming up with the ending codebook through picking out the center of the same fragment group. The process is finalized by evaluating the proposed method on four datasets of the various languages. This method being proposed had an impressive 97.12% identification rate which is rates the best result on the ICFHR dataset.
Publisher
Sulaimani Polytechnic University
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献