Affiliation:
1. School of Computer Science and Engineering, Hebrew University of Jerusalem
Abstract
In this work we first present an explicit forking lemma that distills the information-theoretic essence of the high-moment technique introduced by Rotem and Segev (CRYPTO '21), who analyzed the security of identification protocols and Fiat-Shamir signature schemes. Whereas the technique of Rotem and Segev was particularly geared towards two specific cryptographic primitives, we present a stand-alone probabilistic lower bound, which does not involve any underlying primitive or idealized model. The key difference between our lemma and previous ones is that instead of focusing on the tradeoff between the worst-case or expected running time of the resulting forking algorithm and its success probability, we focus on the tradeoff between higher moments of its running time and its success probability.
Equipped with our lemma, we then establish concrete security bounds for the BN and BLS multi-signature schemes that are significantly tighter than the concrete security bounds established by Bellare and Neven (CCS '06) and Boneh, Drijvers and Neven (ASIACRYPT '18), respectively. Our analysis does not limit adversaries to any idealized algebraic model, such as the algebraic group model in which all algorithms are assumed to provide an algebraic justification for each group element they produce. Our bounds are derived in the random-oracle model based on the standard-model second-moment hardness of the discrete logarithm problem (for the BN scheme) and the computational co-Diffie-Hellman problem (for the BLS scheme). Such second-moment assumptions, asking that the success probability of any algorithm in solving the underlying computational problems is dominated by the second moment of the algorithm's running time, are particularly plausible in any group where no better-than-generic algorithms are currently known.
Publisher
International Association for Cryptologic Research
Reference42 articles.
1. A public-key cryptosystem suitable for digital
multisignatures;Kazuharu Itakura;NEC Research & Development,1983
2. Multi-signatures in the plain public-Key model and a general
forking lemma;Mihir Bellare,2006
3. Compact Multi-signatures for Smaller Blockchains;Dan Boneh,2018
4. Simple Schnorr multi-signatures with applications to
Bitcoin;Gregory Maxwell;Designs, Codes and Cryptography,2019
5. Short Signatures from the Weil Pairing;Dan Boneh,2001
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献