A Long Tweak Goes a Long Way: High Multi-user Security Authenticated Encryption from Tweakable Block Ciphers

Author:

Cogliati Benoît1ORCID,Jean Jérémy2ORCID,Peyrin Thomas3ORCID,Seurin Yannick4ORCID

Affiliation:

1. Thales DIS France SAS

2. ANSSI

3. Nanyang Technological University

4. Ledger

Abstract

We analyze the multi-user (mu) security of a family of nonce-based authentication encryption (nAE) schemes based on a tweakable block cipher (TBC). The starting point of our work is an analysis of the mu security of the SCT-II mode which underlies the nAE scheme Deoxys-II, winner of the CAESAR competition for the defense-in-depth category. We extend this analysis in two directions, as we detail now. First, we investigate the mu security of several TBC-based variants of the counter encryption mode (including CTRT, the encryption mode used within SCT-II) that differ by the way a nonce, a random value, and a counter are combined as tweak and plaintext inputs to the TBC to produce the keystream blocks that will mask the plaintext blocks. Then, we consider the authentication part of SCT-II and study the mu security of the nonce-based MAC Nonce-as-Tweak (NaT) built from a TBC and an almost universal (AU) hash function. We also observe that the standard construction of an AU hash function from a (T)BC can be proven secure under the assumption that the underlying TBC is unpredictable rather than pseudorandom, allowing much better conjectures on the concrete AU advantage. This allows us to derive the mu security of the family of nAE modes obtained by combining these encryption/MAC building blocks through the NSIV composition method. Some of these modes require an underlying TBC with a larger tweak length than what is usually available for existing ones. We then show the practicality of our modes by instantiating them with two new TBC constructions, Deoxys-TBC-512 and Deoxys-TBC-640, which can be seen as natural extensions of the Deoxys-TBC family to larger tweak input sizes. Designing such TBCs with unusually large tweaks is prone to pitfalls: Indeed, we show that a large-tweak proposal for SKINNY published at EUROCRYPT 2020 presents an inherent construction flaw. We therefore provide a sound design strategy to construct large-tweak TBCs within the Superposition Tweakey (STK) framework, leading to new Deoxys-TBC and SKINNY variants. We provide software benchmarks indicating that while ensuring a very high security level, the performances of our proposals remain very competitive.

Publisher

International Association for Cryptologic Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3