Bergenin is a C-glucoside derivative of gallic acid but its antioxidant and hepatoprotective effects have not previously been compared with gallic acid. Male ICR mice were administered bergenin (10, 50, and 250 mg/kg/day) or gallic acid (100 mg/kg/day) for 7 consecutive days before a single administration of ethanol (5 g/kg). Liver sections were histopathologically examined. Aspartate aminotransferase, alanine aminotransferase, reactive oxygen species, and malondialdehyde levels were determined in plasma. Total glutathione, reduced glutathione, and oxidized glutathione levels were determined in liver homogenates. Ethanol induced hepatic injury with prominent histopathological markers including nuclear pyknosis and necrotic areas and this accorded with increases in the plasma levels of aspartate aminotransferase, alanine aminotransferase, reactive oxygen species, and malondialdehyde. Moreover, ethanol disturbed hepatic glutathione homeostasis by reducing glutathione stores. Hepatic injury in the ethanol-induced mice was prevented with bergenin and gallic acid by significant decreases in plasma aspartate aminotransferase, alanine aminotransferase, reactive oxygen species, and malondialdehyde levels and restoration of the hepatic glutathione profile through an increase in the reduced glutathione/oxidized glutathione ratio. Bergenin at 10 mg/kg/day showed comparable hepatoprotective activity to gallic acid in an ethanol-induced mouse model of oxidative stress. Therefore, bergenin might be a promising candidate for further development as a novel hepatoprotective product.