A Schema-Free Instance Matching Algorithm Based on Virtual Document Similarity

Author:

Amrouch Siham,Mostefai Sihem

Abstract

With the continuous development of semantic web, especially of the web of data, several knowledge bases expressed by ontologies are independently created and added to the Linked Open Data (LOD) cloud, on a daily basis. A major challenge for the LOD paradigm is to discover resources that refer to the same real-world object, in order to interlink web resources and hold large scale data integration and sharing. In this context, instance matching is a promising solution. It aims to link co-referent instances belonging to heterogeneous knowledge bases with owl:sameAs links. Several state-of-the-art existing approaches addressing this issue are based on the prior schema-level matchings, which does not avoid the limitation of heterogeneity at the property-level. In this paper, we propose a schema-free, scalable and efficient instance matching approach that is independent from matching results at the schema-level. We transform the instance matching problem to a document similarity problem and we solve it by a Clustering technique that uses an Ascendant Hierarchical Clustering algorithm to group similar instances in the same clusters. Furthermore, we design multiple validating patterns that use some structural information to validate obtained mappings and eliminate wrong ones. Experiments on instance matching track from Ontology Alignment Evaluation Initiative (OAEI) show that our approach gets prominent results compared to several participating systems in OAEI’2019, OAEI’2020 and OAEI’2021.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview on Data Ingestion and Schema Matching;Data and Metadata;2024-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3