Assesing The Stability And Selection Performance Of Feature Selection Methods Under Different Data Complexity

Author:

Al Hosni Omaimah,Starkey Andrew

Abstract

Our study aims to investigate the stability and the selection accuracy of feature selection performance under different data complexity. The motivation behind this investigation is that there are significant contributions in the research community from examining the effect of complex data characteristics such as overlapping classes or non-linearity of the decision boundaries on the classification algorithm's performance; however, relatively few studies have investigated the stability and the selection accuracy of feature selection methods with such data characteristics. Also, this study is interested in investigating the interactive effects of the classes overlapped with other data challenges such as small sample size, high dimensionality, and imbalance classes to provide meaningful insights into the root causes for feature selection methods misdiagnosing the relevant features among different real-world data challenges. This analysis will be extended to real-world data to guide the practitioners and researchers in choosing the correct feature selection methods that are more appropriate for a particular dataset. Our study outcomes indicate that using feature selection techniques with datasets of different characteristics may generate different subsets of features under variations to the training data showing that small sample size and overlapping classes have the highest impact on the stability and selection accuracy of feature selection performance, among other data challenges that have been investigated in this study. Also, in this study, we will provide a survey on the current state of research in the feature selection stability context to highlight the area that requires more attention for other researchers.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3