A New Approach to Automatically Find and Fix Erroneous Labels in Dependency Parsing Treebanks

Author:

Bilgin Metin

Abstract

Dependency Parsing (DP) is the existence of sub-term/upper-term relations between the words that make up that sentence for each sentence in the text. DP serves to produce meaningful information for high-level applications. Correct labeling of the text corpus used in DP studies is very important. There will be mistakes in the results of the studies that will be performed with the wrongly-labeled text corpus. If text corpus is labeled manually or automatically by human beings, then faulty cases will occur. As a result of the cases that may arise from human factors or annotations used for labeling, faulty labels will be on treebanks. In order to prevent these errors, detection, and correction of possible faulty labeling is very important in terms of increasing the accuracy of the studies to be carried out. Manual correction of possible faulty labels requires great effort and time. The purpose of this study is to create a model that automatically finds possible faulty labels and offers new label suggestions for faulty labels. With the help of the proposed model, it is aimed to detect and correct possible faulty labels that are included in a text corpus, and to increase consistency among the text corpus of the same language. With the help of the developed model, suggesting new labels for faulty labels by a language expert will be a great convenient for the specialist. Another advantage of the model is that the developed model provides a language-independent structure. It has succeeded in obtaining successful results in finding and correcting potentially faulty labels in experimental studies for Turkish. An increase in accuracy has been detected in studies carried out for languages other than Turkish. In investigating the accuracy of the results obtained by the system, the results were analyzed with the help of 10 different language experts.

Publisher

Zarqa University

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3