Enhancement of the Heuristic Optimization Based Extended Space Forests with Classifier Ensembles

Author:

Kilimci Zeynep1,Omurca Sevinç2

Affiliation:

1. Department of Computer Engineering, Dogus University, Turkey

2. Department of Information Systems Engineering, Kocaeli University, Turkey

Abstract

Extended space forests are a matter of common knowledge for ensuring improvements on classification problems. They provide richer feature space and present better performance than the original feature space-based forests. Most of the contemporary studies employs original features as well as various combinations of them as input vectors for extended space forest approach. In this study, we seek to boost the performance of classifier ensembles by integrating them with heuristic optimization-based features. The contributions of this paper are fivefold. First, richer feature space is developed by using random combinations of input vectors and features picked out with ant colony optimization method which have high importance and not have been associated before. Second, we propose widely used classification algorithm which is utilized baseline classifier. Third, three ensemble strategies, namely bagging, random subspace, and random forests are proposed to ensure diversity. Fourth, a wide range of comparative experiments are conducted on widely used biomedicine datasets gathered from the University of California Irvine (UCI) machine learning repository to contribute to the advancement of proposed study. Finally, extended space forest approach with the proposed technique turns out remarkable experimental results compared to the original version and various extended versions of recent state-of-art studies

Publisher

Zarqa University

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MAPNEWS: A Framework for Aggregating and Organizing Online News Articles;The International Arab Journal of Information Technology;2023

2. Enhanced Bagging (eBagging): A Novel Approach for Ensemble Learning;The International Arab Journal of Information Technology;2020-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3