Neuroevolution of Augmenting Topologies for Artificial Evolution: A Case Study of Kinesis of Creature in the Various Mediums

Author:

Jha Sunil Kumar,Josheski Filip,Zhang Xiaorui,Ahmad Zulfiqar

Abstract

The motivation of the present study is to evolve virtual creatures in a diverse simulated 3D environment. The proposed scheme is based on the artificial evolution using the Neuro Evolution of Augmenting Topologies (NEAT) algorithm to educe a neural network that controls the muscle forces of the artificial creatures. The morphologies of the creatures are established using the Genetic Algorithm (GA) method based on the distance metrics fitness function. The concept of damaging crossover of neural networks and genetic language for the morphology of creatures has been considered in the morphologies of the artificial creature. Creatures with certain morphological traits consume a large time to optimize their kinetics, thus they are placed in a separate species to limit the search. The simulation results in the significant kinetics of artificial creatures (2-5 limbs) in virtual mediums with varying dynamic and static coefficients of friction (0.0-4.0). The motion of artificial creatures in the simulated medium was determined at different angles and demonstrated in the 3D space.

Publisher

Zarqa University

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3