Design and Simulation of Spectrum Access and Power Management Protocol for Dynamic Access Networks

Author:

Masadeh Ala'eddin1,Bany Salameh Haythem2,Abu-El-Haija Ahmad3

Affiliation:

1. Al-Balqa Applied University, Al-Salt, Jordan

2. Al Ain University, Al Ain, UAE

3. Jordan University of Science and Tech., Irbid, Jordan

Abstract

This work investigates the problem of managing the transmission power and assigning channels for multi-channel single-radio Cognitive Radio Ad-Hoc Networks (CRAHNs). The considered network consists of M primary users and N secondary users, where the secondary users can use the licensed channels opportunistically when they are not utilized by the primary users. The secondary users have the capability of sensing the licensed channels and determine their occupation status. They are also able to control their transmission power such that the transmitted data can be received with high quality-of-service with the lowest possible transmission power, and minimum interference among the secondary users. This also contributes in increasing the frequency spatial reuse of the licensed channels by the secondary users, when the channels are unoccupied, which increases the network throughput. This work proposes a channel assignment algorithm aims at assigning the unoccupied licensed channels among secondary users efficiently, and a transmission power control aims at tuning the transmission power used by the secondary users to maximize the network throughput. The results show an enhancement achieved by the proposed protocol when it is integrated to the considered network, which is seen through increasing the network throughput and decreasing in the access delay. In this context, the Network Simulator 2 (NS2) was used to verify our proposed protocol, which indicates a significant enhancement in network performance

Publisher

Zarqa University

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3