Hybrid FiST_CNN approach for Feature Extraction for Vision-Based Indian Sign Language Recognition

Author:

Tyagi Akansha,Bansal Sandhya

Abstract

Indian sign language (ISL) is the commonly used language by the deaf-mute community in the Indian continent. Effective feature extraction is essential for the automatic recognition of gestures. This paper aims at developing an efficient feature extraction technique using FAST, SIFT, and CNN. Features from Fast Accelerated Segment Test(FAST) with Scale-invariant Feature Transformation(SIFT) are used to detect and compute features, respectively. CNN is used for classification with the hybridization of FAST-SIFT features. The system is implemented and tested using the python-based library Keras. The results of the proposed techniques have been tested on 34 gestures of ISL (24 alphabet sets and 10 digit sets) and then compared with the CNN and SIFT_CNN, and it is also tested on two publicly available datasets on Jochen Trisech Dataset(JTD) and NUS-II dataset. The proposed study outperformed some existing ISLR works with an accuracy of 97.89%, 95.68%, 94.90% and 95.87% for ISL-alphabets, MNIST, JTD and NUS-II, respectively.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LOCALIZATION METHOD OF HUMAN SKELETAL SEQUENCE MOVEMENTS IN ICE SPORTS;Journal of Mechanics in Medicine and Biology;2024-03

2. Real-Time Sign Language Fingerspelling Recognition using Convolutional Neural Network;The International Arab Journal of Information Technology;2024

3. Enhancing the Performance of Sign Language Recognition Models Using Machine Learning;2023 24th International Arab Conference on Information Technology (ACIT);2023-12-06

4. Sign Language Digits Recognition Technology Based on a Convolutional Neural Network;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

5. Textural feature descriptors for a static and dynamic hand gesture recognition system;Multimedia Tools and Applications;2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3