Abstract
Recommendation systems are information filtering software that delivers suggestions about relevant stuff from a massive collection of data. Collaborative filtering approaches are the most popular in recommendations. The primary concern of any recommender system is to provide favorable recommendations based on the rating prediction of user preferences. In this article, we propose a novel discretization based framework for collaborative filtering to improve rating prediction. Our framework includes discretization-based preprocessing, chi-square based attribution selection, and K-Nearest Neighbors (KNN) based similarity computation. Rating prediction affords some basis for the judgment to decide whether recommendations are generated or not, subject to the ratio of performance of any recommendation system. Experiments on two datasets MovieLens and BookCrossing, demonstrate the effectiveness of our method.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献