A Novel Machine-Learning Framework-based on LBP and GLCM Approaches for CBIR System

Author:

Garg Meenakshi,Malhotra Manisha,Singh Harpal

Abstract

This paper presents a Multiple-features extraction and reduction-based approaches for Content-Based Image Retrieval (CBIR). Discrete Wavelet Transforms (DWT) on colored channels is used to decompose the image at multiple stages. The Gray Level Co-occurrence Matrix (GLCM) concept is used to extract statistical characteristics for texture image classification. The definition of shared knowledge is used to classify the most common features for all COREL dataset groups. These are also fed into a feature selector based on the particle swarm optimization which reduces the number of features that can be used during the classification stage. Three classifiers, called the Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Decision Tree (DT), are trained and tested, in which SVM give high classification accuracy and precise rates. In several of the COREL dataset types, experimental findings have demonstrated above 94 percent precision and 0.80 to 0.90 precision values.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3