Sentiment Analysis System using Hybrid Word Embeddings with Convolutional Recurrent Neural Network

Author:

Alotaibi Fahd,Gupta Vishal Gupta

Abstract

There have been wide ranges of innovations in sentiment analysis in recent past, with most effective ones involving use of various word embeddings methods for analysis of sentiments. GloVe and Word2Vec are acclaimed to be two most frequently used. A common problem with simple pre-trained embedding methods is that these ignore information related to sentiments of input texts and further depend on large text corpus for training purpose and generation of relevant vectors which is hindrance to researches involving smaller sized corpuses. The aim of proposed study is to propose a novel methodology for sentiment analysis that uses hybrid embeddings with a target to enhance features of available pre-trained embedding. Proposed hybrid embeddings use Part of Speech (POS) tagging and word2position vector over fastText with varied assortments of attached vectors to the pre-trained embedding vectors. The resultant form of hybrid embeddings is fed to our ensemble network-Convolutional Recurrent Neural Network (CRNN). The methodology has been tested for accuracy via different Ensemble models of deep learning and standard sentiment dataset with accuracy value of 90.21 using Movie Review (MVR) Dataset V2. Results show that proposed methodology is effective for sentiment analysis and is capable of incorporating even more linguistic knowledge-based techniques to further improve results of sentiment analysis.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3