A Self-Healing Model for QoS-aware Web Service Composition

Author:

Elsayed Doaa,Nasr Eman,El Ghazali Alaa,Gheith Mervat

Abstract

In the Web Service Composition (WSC) domain, Web Services (WSs) execute in a highly dynamic environment, as a result, the Quality of Service (QoS) of a WS is constantly evolving, and this requires tracking of the global optimization overtime to satisfy the users’ requirements. In order to make a WSC adapt to such QoS changes of WSs, we propose a self-healing model for WSC. Self-healing is the automatic discovery, and healing of the failure of a composite WS by itself due to QoS changes without interruption in the WSC and any human intervention. To the best of our knowledge, almost all the existing self-healing models in this domain substitute the faulty WS with an equivalent one without paying attention to the WS selection processes to achieve global optimization. They focus only on the WS substitution strategy. In this paper, we propose a self-healing model where we use our hybrid approach to find the optimal WSC by using Parallel Genetic Algorithm based on Q-learning, which we integrate with K-means clustering (PGAQK). The components of this model are organized according to IBM’s Monitor, Analyse, Plan, Execute, and Knowledge (MAPE-K) reference model. The PGAQK approach considers as a module in the Execute component. WS substitution strategy has also been applied in this model that substitutes the faulty WS with another equivalent one from a list of candidate WSs by using the K-means clustering technique. K-means clustering is used to prune the WSs in the search space to find the best WSs for the environment changes. We implemented this model over the NET Framework using C# programming language. A series of comparable experiments showed that the proposed model outperforms improved GA to achieve global optimization. Our proposed model also can dynamically substitute the faulty WSs with other equivalent ones in a time-efficient manner

Publisher

Zarqa University

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3