Design and Study of Zombie Enterprise Classification and Recognition Systems Based on Ensemble Learning

Author:

Pang Shutong,Yang Ziwei,Cai Chengyou,Li Zhimin

Abstract

The existence of a large number of zombie enterprises will affect the economic development and hinder the transformation and upgrading of economic industries. To improve the accuracy of zombie enterprise identification, this paper takes multidimensional enterprise data as the original data set, divides it into training set and validation set, and gives the corresponding data pre-processing methods. Combined with 14 standardized features, an integrated learning model for zombie enterprise classification and recognition is constructed and studied based on three pattern recognition algorithms. By using the idea of integration and the cross-validation method to determine the optimal parameters, the Gradient Boosting Decision Tree (GBDT), linear kernel Support Vector Machine (SVM) and Deep Neural Network (DNN) algorithms with classification accuracies of 95%, 96% and 96%, respectively, are used as sub-models, and a more comprehensive strong supervision model with a classification accuracy of 98% is obtained by the stacking method in combination with the advantages of multiple sub-models to analyze the fundamental information of 30885 enterprises. The study improves the accuracy of zombie enterprise identification to 98%, builds enterprise portraits based on this, and finally visualizes the classification results through the platform, which provides an auxiliary means for zombie enterprise classification and identification.

Publisher

Zarqa University

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3