A Modified Technique of Hybrid Multiobjective Genetic Algorithm for Image Fusion

Author:

Kulkarni Jyoti,Bichkar Rajankumar

Abstract

Sensors used in image acquisition. This sensor technology is going on upgrading as per user need or as per need of an application. Multiple sensors collect the information of their respective wavelength band. But one sensor is not sufficient to acquire the complete information of one scene. To gain the overall data of one part, it becomes essential to cartel the images from multiple sources. This is achieved through merging. It is the method of merging the data from dissimilar input sources to create a more informative image compared with an image from a single input source. These are multisensor photos e.g., panchromatic and multispectral images. The first image offers spatial records whereas the lateral image offers spectral data. Through visible inspections, the panchromatic photo is clearer than a multispectral photo however the grey shade image is. Articles are greater clear however nownot recognized whereasmultispectral picture displays one of a kind shades however performing distortion. So comparing the characteristics of these two images, the resultant image is greater explanatory than these enter images. Fusion is done using different transform methods as well as the Genetic Algorithm (GA). Comparing the results obtained by these methods, the output image by the GA is clearer. The feature of the resultant image is verified through parameters such as Root Mean Square Error (RMSE), peak signal to noise ratio, Mutual Information (MI), and Spatial Frequency (SF). In the subjective analysis, some transform techniques also giving exact fused images. The hybrid approach combines the transform technique and a GA is used for image fusion. This is again compared with GA results. The same performance parameters are used. And it is observed that the Hybrid Genetic Algorithm (HGA) is superior tothe AG. Here the only RMSE parameter is considered under the fitness function of the GA so only this parameter is far better than the remaining parameters. If we consider all parameters in the fitness function of the GA then all parameters using a HGA will give better performance. This method is called a Hybrid Multiobjective Genetic Algorithm (HMOGA) [14].

Publisher

Zarqa University

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3