Classification of Breast Cancer using Ensemble Filter Feature Selection with Triplet Attention Based Efficient Net Classifier

Author:

Bangalore Nagaraj Madhukar,Shivanandamurthy Hiremath Bharathi,Matta Polnaya Ashwin

Abstract

In medical imaging, the effective detection and classification of Breast Cancer (BC) is a current research important task because of the still existing difficulty to distinguish abnormalities from normal breast tissues due to their subtle appearance and ambiguous margins and distinguish abnormalities from the normal breast. Moreover, BC detection based on an automated detection model is needed, because manual diagnosis faces problems due to cost and shortage of skilled manpower, and also takes a very long time. Using deep learning and ensemble feature selection techniques, in this paper, a novel framework is introduced for classifying BC from histopathology images. The five primary steps of the suggested framework are as follows: 1) to make the largest original dataset and then deep learning model with data augmentation to improve the learning. 2) The best features are selected by an Ensemble Filter Feature selection Method (EFFM) which combines the best feature subsets to produce the final feature subsets. 3) Then the pruned Convolution Neural Network (CNN) model is utilized to extract the optimal features. 4) Finally, the classification is done through the Triplet Attention based Efficient Network (TAENet) classifier. The suggested model produces a 98% accuracy rate after being trained and tested on two different histopathology imaging datasets including images from four different data cohorts. Subsequently, the suggested strategy outperforms the conventional ones since the ensemble filter habitually acquires the best features, and experimental results demonstrate the importance of the proposed approach

Publisher

Zarqa University

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3