Analysis of QA System Behavior against Context and Question Changes

Author:

Karra Rachid,Lasfar Abdelali

Abstract

Data quality has gained increasing attention across various research domains, including pattern recognition, image processing, and Natural Language Processing (NLP). The goal of this paper is to explore the impact of data quality (both questions and context) on Question-Answering (QA) system performance. We introduced an approach to enhance the results of the QA system through context simplification. The strength of our methodology resides in the utilization of human-scale NLP models. This approach promotes the utilization of multiple specialized models within the workflow to enhance the QA system’s outcomes, rather than relying solely on resource-intensive Large Language Model (LLM). We demonstrated that this method improves the correct response rate of the QA system without modification or additional training of the model. In addition, we conducted a cross-disciplinary study involving NLP and linguistics. We analyzed QA system results to showcase their correlation with readability and text complexity linguistic metrics using Coh-Metrix. Lastly, we explore the robustness of Bidirectional Encoder Representations from Transformers (BERT) and Reliable National Entrance Test (R-NET) models when confronted with noisy questions.

Publisher

Zarqa University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3