A Comparative Study of Different Pre-Trained Deep Learning Models and Custom CNN for Pancreatic Tumor Detection

Author:

Zavalsız Muhammed,Alhajj Sleiman,Sailunaz Kashfia,Ozyer Tansel,Alhajj Reda

Abstract

Artificial Intelligence and its sub-branches like Machine Learning (ML) and Deep Learning (DL) applications have the potential to have positive effects that can directly affect human life. Medical imaging is briefly making the internal structure of the human body visible with various methods. With deep learning models, cancer detection, which is one of the most lethal diseases in the world, can be made possible with high accuracy. Pancreatic Tumor detection, which is one of the cancer types with the highest fatality rate, is one of the main targets of this project, together with the data set of Computed Tomography images, which is one of the medical imaging techniques and has an effective structure in Pancreatic Cancer imaging. In the field of image classification, which is a computer vision task, the transfer learning technique, which has gained popularity in recent years, has been applied quite frequently. Using pre-trained models were previously trained on a fairly large dataset and using them on medical images is common nowadays. The main objective of this article is to use this method, which is very popular in the medical imaging field, in the detection of PDAC, one of the deadliest types of pancreatic cancer, and to investigate how it per- forms compared to the custom model created and trained from scratch. The pre-trained models which are used in this project are VGG-16 and ResNet, which are popular Convolutional Neutral Network models, for Pancreatic Tumor Detection task. With the use of these models, early diagnosis of pancreatic cancer, which progresses insidiously and therefore does not spread to neighboring tissues and organs when the treatment process is started, may be possible. Due to the abundance of medical images reviewed by medical professionals, which is one of the main causes for heavy workload of healthcare systems, this application can assist radiologists and other specialists in Pancreatic Tumor detection by providing faster and more accurate method

Publisher

Zarqa University

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3