Author:
Agarwal Khushboo,Dixit Manish
Abstract
Computer vision enables to detect many objects in any scenario which helps in various real time application but still face recognition and detection remains a tedious process due to the low resolution, blurriness, noise, diverse pose and expression and occlusions. This proposal develops a novel scrupulous Standardized Convolute Generative Adversarial Network (SCGAN) framework for performing accurate face recognition automatically by restoring the occluded region including blind face restoration. Initially, a scrupulous image refining technique is utilised to offer the appropriate input to the network in the subsequent process. Following the pre-processing stage, a Caffe based Principle Component Analysis (PCA) filtration is conducted which uses convolutional architecture for fast feature embedding that collects spatial information and significant differentiating characteristics to counteract the loss of information existing in pooling operations. Then a filtration method identifies the specific match of the face based on the extracted features, creating uncorrelated variables that optimise variance across time while minimising information loss. To handle all the diversification occurring in the image and accurately recognise the face with occlusion in any part of the face, a novel Standardized Convolute GAN network is used to restore the image and recognise the face using novel Generative Adversarial Network (GAN) networks are modelled. This GAN ensures the normal distribution along with parametric optimization contributing to the high performance with accuracy of 96.05% and Peak Signal to Noise Ratio (PSNR) of 18 and Structural Similarity Index Metric (SSIM) of 98% for restored face recognition. Thus, the performance of the framework based on properly recognizing the face from the generated images is evaluated and discussed.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献