Word Embedding as a Semantic Feature Extraction Technique in Arabic Natural Language Processing: An Overview

Author:

Bourahouat Ghizlane,Abourezq Manar,Daoudi Najima

Abstract

Feature extraction has transformed the field of Natural Language Processing (NLP) by providing an effective way to represent linguistic features. Various techniques are utilised for feature extraction, such as word embedding. This latter has emerged as a powerful technique for semantic feature extraction in Arabic Natural Language Processing (ANLP). Notably, research on feature extraction in the Arabic language remains relatively limited compared to English. In this paper, we present a review of recent studies focusing on word embedding as a semantic feature extraction technique applied in Arabic NLP. The review primarily includes studies on word embedding techniques applied to the Arabic corpus. We collected and analysed a selection of journal papers published between 2018 and 2023 in this field. Through our analysis, we categorised the different feature extraction techniques, identified the Machine Learning (ML) and/or Deep Learning (DL) algorithms employed, and assessed the performance metrics utilised in these studies. We demonstrate the superiority of word embeddings as a semantic feature representation in ANLP. We compare their performance with other feature extraction techniques, highlighting the ability of word embeddings to capture semantic similarities, detect contextual associations, and facilitate a better understanding of Arabic text. Consequently, this article provides valuable insights into the current state of research in word embedding for Arabic NLP.

Publisher

Zarqa University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Spam Reviews in Arabic by Deep Learning;The International Arab Journal of Information Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3