Author:
Al Maqousi Ali,Alauthman Mohammad
Abstract
Robots are becoming increasingly common in critical healthcare, transportation, and manufacturing applications. However, these systems are vulnerable to malware attacks, compromising reliability and security. Previous research has investigated the use of Machine Learning (ML) to detect malware in robots. However, existing approaches have faced several challenges, including class imbalance, high dimensionality, data heterogeneity, and balancing detection accuracy with false positives. This study introduces a novel approach to malware detection in robots that uses ensemble learning combined with the Synthetic Minority Over-sampling Technique (SMOTE). The proposed approach stacks three (ML models Random Forest (RF), Artificial Neural Networks (ANN), and Support Vector Machines (SVM) to improve accuracy and system robustness. SMOTE addresses the class imbalance in the dataset. Evaluation of the proposed approach on a publicly available dataset of robotic systems yielded promising results. The approach outperformed individual models and existing approaches regarding detection accuracy and false positive rates. This study represents a significant advancement in malware detection for robots. It could enhance the reliability and security of these systems in various critical applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献