RoboGuard: Enhancing Robotic System Security with Ensemble Learning

Author:

Al Maqousi Ali,Alauthman Mohammad

Abstract

Robots are becoming increasingly common in critical healthcare, transportation, and manufacturing applications. However, these systems are vulnerable to malware attacks, compromising reliability and security. Previous research has investigated the use of Machine Learning (ML) to detect malware in robots. However, existing approaches have faced several challenges, including class imbalance, high dimensionality, data heterogeneity, and balancing detection accuracy with false positives. This study introduces a novel approach to malware detection in robots that uses ensemble learning combined with the Synthetic Minority Over-sampling Technique (SMOTE). The proposed approach stacks three (ML models Random Forest (RF), Artificial Neural Networks (ANN), and Support Vector Machines (SVM) to improve accuracy and system robustness. SMOTE addresses the class imbalance in the dataset. Evaluation of the proposed approach on a publicly available dataset of robotic systems yielded promising results. The approach outperformed individual models and existing approaches regarding detection accuracy and false positive rates. This study represents a significant advancement in malware detection for robots. It could enhance the reliability and security of these systems in various critical applications

Publisher

Zarqa University

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT Security Challenges in Modern Smart Cities;2024 2nd International Conference on Cyber Resilience (ICCR);2024-02-26

2. LightGBM: A Leading Force in Breast Cancer Diagnosis Through Machine Learning and Image Processing;IEEE Access;2024

3. Estimating Remaining Time of Business Processes based on Traces Structural Analysis;2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI);2023-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3