A Topic-Specific Web Crawler using Deep Convolutional Networks

Author:

ALqaraleh Saed Abdel Wahhab Reshid,Sırın Hatice Meltem Nergız

Abstract

This paper presented a new focused crawler that efficiently supports the Turkish language. The developed architecture was divided into multiple units: a control unit, crawler unit, link extractor unit, link sorter unit, and natural language processing unit. The crawler's units can work in parallel to process the massive amount of published websites. Also, the proposed Convolutional Neural Network (CNN) based natural language processing unit can professionally classifying Turkish text and web pages. Extensive experiments using three datasets have been performed to illustrate the performance of the developed approach. The first dataset contains 50,000 Turkish web pages downloaded by the developed crawler, while the other two are publicly available and consist of “28,567” and “22,431” Turkish web pages, respectively. In addition, the Vector Space Model (VSM) in general and word embedding state-of-the-art techniques, in particular, were investigated to find the most suitable one for the Turkish language. Overall, results indicated that the developed approach had achieved good performance, robustness, and stability when processing the Turkish language. Also, Bidirectional Encoder Representations from Transformer (BERT) was found to be the most appropriate embedding for building an efficient Turkish language classification system. Finally, our experiments showed superior performance of the developed natural language processing unit against seven state-of-the-art CNN classification systems. Where accuracy improvement compared to the second-best is 10% and 47% compared to the lowest performance.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing a RBFN-Based Enhanced Web Crawler for Tamil Text Categorization;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

2. Exploring the Effectiveness of Different Embedding Methods for Toxicity Classification;Studies in Systems, Decision and Control;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3