T-LBERT with Domain Adaptation for Cross-Domain Sentiment Classification

Author:

Cao Hongye,Wei Qianru,Zheng Jiangbin

Abstract

Cross-domain sentiment classification transfers the knowledge from the source domain to the target domain lacking supervised information for sentiment classification. Existing cross-domain sentiment classification methods establish connections by extracting domain-invariant features manually. However, these methods have poor adaptability to bridge connections across different domains and ignore important sentiment information. Hence, we propose a Topic Lite Bidirectional Encoder Representations from Transformers (T-LBERT) model with domain adaption to improve the adaptability of cross-domain sentiment classification. It combines the learning content of the source domain and the topic information of the target domain to improve the domain adaptability of the model. Due to the unbalanced distribution of information in the combined data, we apply a two-layer attention adaptive mechanism for classification. A shallow attention layer is applied to weigh the important features of the combined data. Inspired by active learning, we propose a deep domain adaption layer, which actively adjusts model parameters to balance the difference and representativeness between domains. Experimental results on Amazon review datasets demonstrate that the T-LBERT model considerably outperforms other state-of-the-art methods. T-LBERT shows stable classification performance on multiple metrics.

Publisher

Zarqa University

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3