Hybrid Feature Selection based on BTLBO and RNCA to Diagnose the Breast Cancer

Author:

Allam Mohan,Malaiyappan Nandhini

Abstract

Feature selection is a feasible solution to improve the speed and performance of machine learning models. Optimization algorithms are doing a significant job in searching for optimal variables from feature space. Recent feature selection methods are purely depending on various meta heuristic algorithms for searching a good combination of features without considering the importance of individual features, which makes classification models to suffer from local optima or overfitting problems. In this paper, a novel hybrid feature subset selection technique is introduced based on Regularized Neighborhood Component Analysis (RNCA) and Binary Teaching Learning Based Optimization (BTLBO) algorithms to overcome the above problems. RNCA algorithm assigns weights to the attributes based on their contribution in building the learning models for classification. BTLBO algorithm computes the fitness of individuals with respect to the weights of features and selects the best ones. The results of similar feature selection methods are matched with the proposed hybrid model and proved better performance in terms of classification accuracy, recall and AUC measures over breast cancer datasets.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3