Abstract
The group of divisibility of an integral domainis the multiplicative group of nonzero principal fractional ideals ofthe domain and is a partially ordered group under reverse inclusion. We study the group of divisibility of a finite intersection of valuation overrings of polynomial rings in at most three variables and we classify all semilocal lattice-ordered groups which are realizable over k[x1,x2,...,xn] for n≤3.
Publisher
Luhansk Taras Shevchenko National University
Reference15 articles.
1. [1] Abhyankar, S.: On the valuations centered in a local domain. Amer. J. Math.78,321-348 (1956). https://doi.org/10.2307/2372519
2. [2] Anderson, M., Feil, T.: Lattice-ordered groups. An introduction. Reidel Texts inthe Mathematical Sciences. D. Reidel Publishing Co., Dordrecht (1988).
3. [3] Doering, A.M., Lequain, Y.: The Weak Approximation Theorem for Valuations.J. of Algebra.211, 711-735 (1999). https://doi.org/10.1006/jabr.1998.7627
4. [4] Engler, A.J., Prestel, A.: Valued fields. Springer Monographs in Mathematics.Springer-Verlag, Berlin (2005).
5. [5] Fuchs, L., Salce, L.: Modules over non-Noetherian domains. Mathematical Surveysand Monographs, vol.84. American Mathematical Society, Providence, RI (2001). https://doi.org/10.1090/surv/084