Author:
Imam A. T., ,Ibrahim S.,Garba G. U.,Usman L.,Idris A., , , ,
Abstract
Let Xn be the finite set {1,2,3· · ·, n} and On defined by On={α∈Tn:(∀x, y∈Xn), x⩽y→xα⩽yα}be the semigroup of full order-preserving mapping on Xn. A transformation α in On is called quasi-idempotent if α=α2=α4. We characterise quasi-idempotent in On and show that the semigroup On is quasi-idempotent generated. Moreover, we obtained an upper bound forquasi-idempotents rank of On, that is, we showed that the cardinality of a minimum quasi-idempotents generating set for On is less than or equal to ⌈3(n−2)2⌉ where ⌈x⌉ denotes the least positive integerm such that x⩽m<x+ 1.
Publisher
Luhansk Taras Shevchenko National University
Subject
Discrete Mathematics and Combinatorics,Algebra and Number Theory
Reference18 articles.
1. [1]Bugay, L (2019). Quasi-idempotent ranks of some permutation groups and trans-formation semigroups. Turkish Journal of Mathematics 43:2390-2395.
2. [2]Bugay, L. (2021). Quasi-idempotent rank of proper ideals in őnite symmetricinverse semigroup. Turkish Journal of Mathematics 45:281-287.
3. [3]Garba, G. U. (1994). On idempotent rank of certain semigroups of transformations.Portugaliae Mathematica 51:185-204.
4. [4]Garba, G. U.,Tanko, A. I., Madu, B. A. (2011). Products and rank of quasi-idempotents in őnite full transformations semigroups. JMI, International Journalof Mathematical Sciences 2(1):12-19.
5. [5]Garba, G. U., Imam, A. T. (2016). Product of quasi-idempotents in őnite symmetric inverse semigroups. Semigroup Forum 92(3):645-658.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献