Linking Individual Data From the Spinal Cord Injury Model Systems Center and Local Trauma Registry: Development and Validation of Probabilistic Matching Algorithm

Author:

Chen Yuying1,Wen Huacong1,Griffin Russel2,Roach Mary Joan34,Kelly Michael L.5

Affiliation:

1. Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama

2. Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama

3. Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, Ohio

4. Center for Health Research & Policy, MetroHealth Medical System, Cleveland, Ohio

5. Department of Neurosurgery, Case Western Reserve University School of Medicine, MetroHealth Medical Center, Cleveland, Ohio

Abstract

Background: Linking records from the National Spinal Cord Injury Model Systems (SCIMS) database to the National Trauma Data Bank (NTDB) provides a unique opportunity to study early variables in predicting long-term outcomes after traumatic spinal cord injury (SCI). The public use data sets of SCIMS and NTDB are stripped of protected health information, including dates and zip code. Objectives: To develop and validate a probabilistic algorithm linking data from an SCIMS center and its affiliated trauma registry. Method: Data on SCI admissions 2011–2018 were retrieved from an SCIMS center (n = 302) and trauma registry (n = 723), of which 202 records had the same medical record number. The SCIMS records were divided equally into two data sets for algorithm development and validation, respectively. We used a two-step approach: blocking and weight generation for linking variables (race, insurance, height, and weight). Results: In the development set, 257 SCIMS-trauma pairs shared the same sex, age, and injury year across 129 clusters, of which 91 records were true-match. The probabilistic algorithm identified 65 of the 91 true-match records (sensitivity, 71.4%) with a positive predictive value (PPV) of 80.2%. The algorithm was validated over 282 SCIMS-trauma pairs across 127 clusters and had a sensitivity of 73.7% and PPV of 81.1%. Post hoc analysis shows the addition of injury date and zip code improved the specificity from 57.9% to 94.7%. Conclusion: We demonstrate the feasibility of probabilistic linkage between SCIMS and trauma records, which needs further refinement and validation. Gaining access to injury date and zip code would improve record linkage significantly.

Publisher

American Spinal Injury Association

Subject

Clinical Neurology,Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3