Brain White Matter Abnormality Induced by Chronic Spinal Cord Injury in the Pediatric Population: A Preliminary Tract-based Spatial Statistic Study

Author:

Fisher Joshua1,Alizadeh Mahdi12,Middleton Devon1,Matias Caio M.2,Mulcahey MJ3,Calhoun-Thielen Christina3,Mohamed Feroze B.1,Krisa Laura1

Affiliation:

1. Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

2. Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

3. Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania

Abstract

Objectives: Tract-based spatial statistics (TBSS) is a diffusion tensor imaging (DTI)–based processing technique that aims to improve the objectivity and interpretability of analysis of multisubject diffusion imaging studies. This study used TBSS to measure quantitative changes in brain white matter structures following spinal cord injury (SCI). Methods: Eighteen SCI subjects aged 8–20 years old (mean age, 16.5 years) were scanned using a conventional single-shot EPI DTI protocol using a 3.0T Siemens MR scanner. All participants underwent a complete International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination to determine the level and severity of injury. Five participants were classified as American Spinal Injury Association Impairment Scale (AIS) A, nine as AIS B, and four as AIS C/D. Imaging parameters used for data collection were as follows: 20 directions, b = 1000 s/mm2, voxel size = 1.8 mm x 1.8 mm, slice thickness = 5 mm, TE = 95 ms, TR = 4300 ms, slices = 30, TA = 4:45 min. To generate TBSS, nonparametric permutation tests were used for voxel-wise statistical analysis of the fractional anisotropy (FA) skeletons between AIS groups. A two-tailed t test was applied to extract voxels with significant differences at p < .05. Results: Notable significant changes occurred throughout the corticospinal, spinothalamic, and dorsal column/medial lemniscus tracts. Altered regions in the temporal, occipital, and parietal lobes were also identified. Conclusion: These results suggest that white matter structures are altered differently between people with different AIS classifications. TBSS has the potential to serve as a screening tool to identify white matter changes in regions of interest.

Publisher

American Spinal Injury Association

Subject

Clinical Neurology,Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3