Comparative removal of naphthalene by adsorption on different sand/bentonite mixtures

Author:

Rennane S.1,Bendjaballah-Lalaoui N.1,Trari M.2

Affiliation:

1. Laboratory of Catalytic Materials and Catalysis in Organic Chemistry, Faculty of Chemistry (USTHB) BP 32 El-Alia 16111, Algiers, Algeria

2. Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), BP 32, 16111, Algiers, Algeria

Abstract

The purpose of this study was to advance the understanding of naphthalene (polycyclic aromatic hydrocarbon) adsorption on sand/bentonite mixtures in the context of their use in the lining of waste disposal facilities. Batch adsorption studies were carried out to estimate the adsorption capacities of sand/bentonite mixtures. Different percentages of the bentonite (0% to 12%) in sand/bentonite mixtures were tested. These mixtures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). It was found that the mixture with 2% of bentonite adsorbs the highest amount of naphthalene over the whole range of initial naphthalene concentrations studied (Co: 2.5-22 mg L-1); this optimal fraction was therefore selected. The effect of the initial naphthalene concentration, percentage of the bentonite in the sand/bentonite mixture and temperature on the adsorption was investigated. The adsorption isotherms, established for every percentage of bentonite, revealed that the naphthalene adsorption follows a linear Freundlich isotherm for the optimal fraction of bentonite (2%). The kinetic study showed that the process obeys a pseudo-second-order equation model. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated an endothermic and spontaneous nature of the naphthalene adsorption. The adsorption of naphthalene is more favorable at high temperatures and activation energy (8.263 kJ mol-1) suggests a physical adsorption. Keywords: Adsorption; Naphthalene; Bentonite; Sand/bentonite mixture.

Publisher

Institute of Chemical Engineering, Bulgarian Academy of Sciences

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3