CROSS-LANGUAGE TEXT CLASSIFICATION WITH CONVOLUTIONAL NEURAL NETWORKS FROM SCRATCH

Author:

Enweiji Musbah Zaid1,Lehinevych Taras2,Glybovets Аndrey2

Affiliation:

1. National University of Kyiv-Taras Shevchenko

2. National University of “Kyiv-Mohyla Academy”

Abstract

Cross language classification is an important task in multilingual learning, where documents in different languages often share the same set of categories. The main goal is to reduce the labeling cost of training classification model for each individual language. The novel approach by using Convolutional Neural Networks for multilingual language classification is proposed in this article. It learns representation of knowledge gained from languages. Moreover, current method works for new individual language, which was not used in training. The results of empirical study on large dataset of 21 languages demonstrate robustness and competitiveness of the presented approach.

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Reference26 articles.

1. Ko, Y., Seo, J. (2000). Automatic text categorization by unsupervised learning. Proceedings of the 18th Conference on Computational Linguistics, 1, 453–459. doi: 10.3115/990820.990886

2. Zhang, X., Le Cun, Y. (2016). Text Understanding from Scratch. arXiv:1502.01710v5 [cs.LG]. Available at: https://arxiv.org/pdf/1502.01710.pdf

3. Korde, V. (2012). Text Classification and Classifiers: A Survey. International Journal of Artificial Intelligence & Applications, 3 (2), 85–99. doi: 10.5121/ijaia.2012.3208

4. Schäuble, P. (1997). Multimedia Information Retrieval. Springer US, 138. doi: 10.1007/978-1-4615-6163-7

5. Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012), 1097–1105.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation of Text Categorization Algorithms Using an Albanian Corpus;Advances in Internet, Data & Web Technologies;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3