CONSTRUCTION OF MINIMAX CONTROL FOR ALMOST CONSERVATIVE CONTROLLED DYNAMIC SYSTEMS WITH THE LIMITED PERTURBATIONS

Author:

Svyatovets Iryna1

Affiliation:

1. Institute of Mathematics of NAS of Ukraine

Abstract

The problem is considered for constructing a minimax control for a linear stationary controlled dynamical almost conservative system (a conservative system with a weakly perturbed coefficient matrix) on which an unknown perturbation with bounded energy acts. To find the solution of the Riccati equation, an approach is proposed according to which the matrix-solution is represented as a series expansion in a small parameter and the unknown components of this matrix are determined from an infinite system of matrix equations. A necessary condition for the existence of a solution of the Riccati equation is formulated, as well as theorems on additive operations on definite parametric matrices. A condition is derived for estimating the parameter appearing in the Riccati equation. An example of a solution of the minimax control problem for a gyroscopic system is given. The system of differential equations, which describes the motion of a rotor rotating at a constant angular velocity, is chosen as the basis.

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Reference13 articles.

1. Novitskiy, V. V. (2008). Control of gyroscopic systems and other analytical mechanics problems. Pratsi Institutu matematyki NAN Ukrainy. Vol. 78: Matematika ta yiyi zastosuvannya. Kyiv, 124.

2. Novitskiy, V. V. (2004). Lyapunov equation for almost conservative systems. Kyiv: Institut matematyki NAN Ukrainy, 34.

3. Aleksandrov, A. G. (2008). Metody postroeniya system avtomaticheskogo upravleniya [Methods of construction of automatic control systems]. Moscow: Fizmatkniga, 232.

4. Biryukov, R. S. (2013). Minimax control of linear object in the external disturbance and undefined initial conditions on a finite time interval. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Seriia: Matematicheskoe modelirovanie i optimal'noe upravlenie, 3 (1), 206–211.

5. Ignashchenko, E. Y., Pankov, A. R., Semenikhin, K. V. (2010). A statistical minimax approach to optimizing linear models under a priori uncertainty conditions. Journal of Computer and Systems Sciences International, 49 (5), 710–718. doi: 10.1134/s1064230710050059

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3