Modeling the convective component of the heat flow from a spill fire at railway accidence

Author:

Abramov YuriyORCID,Basmanov OleksiiORCID,Oliinik VolodymyrORCID,Khmyrov IhorORCID,Khmyrova AnastasiiaORCID

Abstract

A significant number of emergencies that occur in the chemical, processing and transport industries begin with an accidental spill and ignition of a flammable liquid. In this case, the spread of fire to neighboring objects is of particular danger. When developing fire protection measures in areas where flammable liquids are stored, as a rule, heat transfer from a fire only by radiation is taken into account. But in some cases, the convection component of the heat flow can make a significant contribution to the overall heat transfer. Ignoring it can lead to an erroneous assessment of the safety of an industrial facility. In the paper, a model of the distribution of velocity and temperature in the upward flow, rising above the spill of a burning liquid, is constructed. The model is based on the system of Navier-Stokes equations, which, by means of simplifications, is reduced to a non-linear second-order differential equation of the parabolic type. The properties of the combustion site determine the boundary conditions of the first kind. In this case, the spill of a flammable liquid can have any shape. The presence of wind is taken into account by introducing a stable horizontal component of the flow velocity. For the numerical solution of the equation, the method of completed differences is used. The dependence of the kinematic viscosity on the flow temperature is taken into account. An empirical formula is used as the relationship between temperature and speed. It is shown that the presence of wind leads to an inclination of the ascending flow. The angle of inclination is not constant and increases with distance from the combustion source due to a decrease in speed and cooling of the flow. An estimate of the coefficient of convection heat transfer convection of the tank wall with ascending flows over the combustion source is constructed. It is shown that the coefficient of convection heat transfer increases with increasing wind speed

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Аssessment of excess pressure during accidents at oil refineries;Problems of Emergency Situations;2024-04-24

2. An Algorithm for Determining the Parameters of Oil Spill Fire;Advanced Sciences and Technologies for Security Applications;2024

3. Developing a model of the radiating surface of a flame over a flammable liquid spill in the presence of wind;Problems of Emergency Situations;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3