Synthesis and characterization of MgB2 superconductors with carbon nanotubes (CNTs) and tin (Sn) addition

Author:

Hendrik HendrikORCID,Nur Farhanudin MuhammadORCID,Darsono NonoORCID,Herbirowo SatrioORCID,Darminto DarmintoORCID,Pramono Andika WidyaORCID,Imaduddin AgungORCID

Abstract

MgB2/CNT is a promising candidate for superconducting wire application due to its excellent mechanical properties and carbon nanotube’s low density. However, strong interfacial adhesion between the CNT reinforcement and the MgB2 matrix is difficult to manage. Therefore, this study examines the synthesis and characterization of magnesium diboride (MgB2) superconductors with carbon nanotubes (CNTs) and tin (Sn) addition. Determining the proper method and combination of CNT & Sn affects MgB2 superconductors is crucial. Raw materials of magnesium (Mg), boron (B), Sn, and multi-walled carbon nanotubes (MWCNTs) were used for a solid-state reaction process to determine the proper synthesis method and the effect of CNT on superconductors’ critical temperature. Each sample was obtained by weighing the raw material first, followed by hand grinding with agate mortars for 3 hours. The pelletization was then conducted by using a compact pressing machine with a pressure of 350 MPa. The compacted samples were then sintered at 800 °C for 2 hours either through the vacuum or PIST process. Finally, all were characterized, and MgB2 was discovered to be the dominant phase with minor impurity phases such as MgO, Mg, Mg2Sn, C, and Sn. Based on SEM morphological analysis, the grain boundaries of sample A1 were more precise than B2. In both, the grain size also varies, and the distribution of elements is uneven. Subsequently, Cryogenic Magnet Characterization indicated that at 40 K, almost all samples possess superconducting characteristics. For future studies, the potential impact of MgB2 on critical current density (Jc) and magnetic density (Hc) in several commercial applications such as Magnetic Resonance Imaging (MRI), magnetic levitation, and transformers needs to be investigated

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3