Research on calculation of grinding surface roughness

Author:

Tran Thi Van NgaORCID,Nguyen Lam KhanhORCID,Nguyen Van CuongORCID

Abstract

In machining processes, grinding is often chosen as the final machining method. Grinding is often chosen as the final machining method. This process has many advantages such as high precision and low surface roughness. It depends on many parameters including grinding parameters, dressing parameters and lubrication conditions. In grinding, the surface roughness of a workpiece has a significant influence on quality of the part. This paper presents a study of the grinding surface roughness predictions of workpieces. Based on the previous studies, the study built a relationship between the abrasive grain tip radius and the Standard marking systems of the grinding wheel for conventional and superabrasive grinding wheels (diamond and CBN abrasive). Based on this, the grinding surface roughness was predicted. The proposed model was verified by comparing the predicted and experimental results. Appling the research results, the surface roughness when grinding three types of steel D3, A295M and SAE 420 with Al2O3 and CBN grinding wheels were predicted. The predicted surface roughness values were close to the experimental values, the average deviation between predictive results and experimental results is 15.11 % for the use of Al2O3 grinding wheels and 24.29 % for the case of using CBN grinding wheels. The results of the comparison between the predicted model and the experiment show that the method of surface roughness presented in this study can be used to predict surface roughness in each specific case. The proposed model was verified by comparing the predicted and measured results of surface hardness. This model can be used to predict the surface hardness when surface grinding

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3