Developing capacity sharing strategy for vehicular networks with integrated use of licensed and unlicensed spectrum

Author:

Albonda HaiderORCID,Al-Majdi KadhumORCID,Abbas BahaaORCID

Abstract

A widely deployed cellular network, supported by direct connections, can offer a promising solution that supports new services with strict requirements on access availability, reliability, and end-to-end (E2E) latency. The communications between vehicles can be made using different radio interfaces: One for cellular communication (i.e., cellular communication over the cellular network based on uplink (UL)/downlink (DL) connections) and the other for direct communication (i.e., D2D-based direct communications between vehicles which allows vehicular users (V-UEs) to communicate directly with others). Common cellular systems with licensed spectrum backed by direct communication using unlicensed spectrum can ensure high quality of service requirements for new intelligent transportation systems (ITS) services, increase network capacity and reduce overall delays. However, selecting a convenient radio interface and allocating radio resources to users according to the quality of service (QoS) requirements becomes a challenge. In this regard, let’s introduce a new radio resource allocation strategy to determine when it’s appropriate to establish the communication between the vehicles over a cellular network using licensed spectrum resources or D2D-based direct connections over unlicensed spectrum sharing with Wi-Fi. The proposed strategy aims at meeting the quality of service requirements of users, including reducing the possibility of exceeding the maximum delay restrictions and enhancing network capacity utilization in order to avoid service interruption. The proposed solution is evaluated by highlighting different conditions for the considered scenario, and it is demonstrated that the proposed strategy improves network performance in terms of transmitted data rate, packet success rate, latency, and resource usage

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Reference32 articles.

1. V2X Cellular Solutions. 5G Americas. Available at: https://www.5gamericas.org/v2x-cellular-solutions/

2. GPP TR 22.885. Study on LTE support for Vehicle to Everything (V2X) services. v14.0.0. Available at: https://www.3gpp.org/DynaReport/22885.htm

3. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions. ETSI TR 102 638 V1.1.2. Available at: https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf

4. GPP TR 22.886. Study on enhancement of 3GPP Support for 5G V2X Services. v15.1.0. Available at: https://www.3gpp.org/DynaReport/22886.htm

5. GPP TR 36.300. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (v14.3.0, Release 15). Available at: https://www.3gpp.org/DynaReport/36300.htm

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3