Affiliation:
1. Odessa National Polytechnic University
Abstract
The study of the problems arising in the management of complex multi-factor systems allows to conclude that the latter should be considered as integrated organizational and technical. The basis of such management is a crisis – an exciting phenomenon, an incentive – unfulfilled needs, a defect, a deficiency or a threat that causes a targeted crisis through technical intervention or to avoid interaction or a change in the state of an object, a change in oneself or one's attitude to what is happening. An information technology for overcoming crises is proposed, which consists in the construction of each crisis into a group of elementary ones with the subsequent transformation of each elementary crisis into an elementary solution using the proposed information technology. The aim of research is to increase the efficiency of managing the development of complex organizational and technical systems through the development and implementation of new dynamic models and methods for finding optimal ways to overcome management crises at the level of elementary representations. The analysis and classification of the negative circumstances that arise in the management of complex dynamic organizational and technical systems, and the crises arising from these circumstances are carried out. The life cycle of an elementary crisis in managing the development of complex organizational and technical systems is shown – from the emergence of elementary negative circumstances to the receipt of elementary solutions to overcome them. An informational method has been developed to support decision making on the choice of means to overcome crises, based on the use of multidimensional percolation models. The structure is proposed and a description of the main steps that are carried out at one iteration of managing a complex organizational and technical system is provided
Subject
General Physics and Astronomy,General Engineering
Reference26 articles.
1. Drozd, M. O., Drozd, J. V. (2014). A problem of hidden faults for instrumentation and control safety-critical systems. Radioelektronni i kompiuterni systemy, 5 (69), 140–145. Available at: http://nbuv.gov.ua/UJRN/recs_2014_5_29
2. Zhang, X., Wu, Y. (2015). Effective medium theory for anisotropic metamaterials. Scientific Reports, 5 (1). doi: https://doi.org/10.1038/srep07892
3. Chernyavskaya, T. (2010). Anti-crisis management of transport enterprises in terms of turbulence. Naukovi pratsi Kirovohradskoho natsionalnoho tekhnichnoho universytetu. Ekonomichni nauky, 18, 247–252.
4. Moskalev, P. V. (2014). Estimates of threshold and strength of percolation clusters on square lattices with (1,π)-neighborhood. Computer Research and Modeling, 6 (3), 405–414. doi: https://doi.org/10.20537/2076-7633-2014-6-3-405-414
5. Moskalev, P. V. (2013). The structure of site percolation models on three-dimensional square lattices. Computer Research and Modeling, 5 (4), 607–622. doi: https://doi.org/10.20537/2076-7633-2013-5-4-607-622