Affiliation:
1. Sivas Cumhuriyet University
Abstract
Shape of particles made by grinding is one of the important measures for determining the utilizations of industrial minerals namely barite, calcite, and talc particles, particularly at production (like coating pigments, paints, rubber and paper) and processing stages (beneficiation by flotation). Therefore, measurement of particle characteristics is a critical issue in the development and control of industrial mineral products in most of the industries for some demanding applications. Ball and rod mills are commonly used as conventional grinding mills to produce a controlled grind size for the flotation circuit in the beneficiation of industrial minerals. Dynamic Image Analysis (DIA) offers reproducible results of a huge number of particles for some industrial minerals namely, barite [1], calcite [2] and talc [3] particles, whose shapes are crucial for some industries utilized as fillers. Thus, this review is about the comparison of shape values in terms of circularity (C) and bounding rectangle aspect ratio (BRAR) determined by the real time DIA. It was found that the shape results of the previous studies for the same samples by SEM measurement [4] were in good agreement with DIA results. It was concluded that the more rounded particles were encountered in the rod milled products for calcite and barite minerals. On the other hand, the more elongated particles were found in the ball milled products for talc mineral. It was attributed to the material type since the same mills were used for all tests. Hence, DIA can be used as a useful tool, which is easy, fast and highly accurate to control the particle shape distributions whether the required powder is fit for use
Subject
General Physics and Astronomy,General Engineering
Reference47 articles.
1. Ulusoy, U. (2019). Quantifying of particle shape differences of differently milled barite using a novel technique: Dynamic image analysis. Materialia, 8, 100434. doi: https://doi.org/10.1016/j.mtla.2019.100434
2. Ulusoy, U., Yekeler, M. (2014). Dynamic image analysis of calcite particles created by different mills. International Journal of Mineral Processing, 133, 83–90. doi: https://doi.org/10.1016/j.minpro.2014.10.006
3. Ulusoy, U. (2016). Dynamic image analysis of differently milled talc particles and comparison by various methods. Particulate Science and Technology, 36 (3), 332–339. doi: https://doi.org/10.1080/02726351.2016.1248261
4. Ulusoy, U. (2008). Physical Attributes of Particles and Their Roles on Wetting and Flotation. Chap. 9. Fine Particle Technology and Characterization. Kerala, 213–230.
5. Critchley, L. (2019). Particle Characterization in Mining. Available at: https://www.azomining.com/Article.aspx?ArticleID=1506
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献