INVESTIGATION OF THE HEATING PROCESSES AND TEMPERATURE FIELD OF THE FREQUENCY-CONTROLLED ASYNCHRONOUS ENGINE BASED ON MATHEMATICAL MODELS

Author:

Zubenko Denis1,Petrenko Alexander2,Dulfan Sergii2

Affiliation:

1. Kharkiv National University of Municipal Economy n. Beketov

2. O. M. Beketov National University of Urban Economy in Kharkiv

Abstract

The study of the temperature field of the engine for non-stationary modes is done. A numerical simulation of a non-stationary thermal process using dynamic EHD, the characteristic of the rate of rise of temperatures is done. An increase in the temperature of individual parts in the idle interval, when the power of heat release is significantly reduced, is established, and the reverse of the heat flow through the air gap is established. It is shown that the EHD method, in contrast to the FEM, is self-sufficient, which determines its practical value. In various parts of the speed control range in the implementation of various laws of regulation. At the same time, the main electrical, magnetic and additional losses associated with the fundamental voltage harmonics (FVH), and mechanical losses, as well as additional electrical and magnetic losses associated with the higher voltage harmonics, change. When using serial asynchronous engines as frequency-controlled. Permissible under the conditions of heating power is significantly reduced by the power of serial engines. Depending on the synchronous speed, the reduction is from 10 % to 20 %. Given the additional overheating due to higher voltage harmonics, as well as the deterioration of the cooling conditions when adjusting the rotational speed "down" from the nominal, it seems very relevant.

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3