Calibrating polypropylene particle model parameters with upscaling and repose surface method

Author:

Sudsawat SupattarachaiORCID,Chongchitpaisan PornchaiORCID,Arunyanart PirapatORCID

Abstract

The discrete element method (DEM) is a computational technique extensively utilized for simulating particles on a large scale, specifically focusing on granular materials. Nonetheless, its implementation requires a substantial amount of computational power and accurate material properties. Consequently, this study delves into an alternative approach referred to as volume-based scaled-up modeling, aiming to simulate polypropylene particles using DEM while mitigating the computational burden and regenerating new material properties. This novel method aims to reduce the CPU time required for the simulation process and represent both the macro mechanical behavior and micro material properties of polypropylene particles. To accomplish this, the dimensions of the polypropylene particles in the DEM simulation were magnified by a factor of two compared to the original size of the prolate spheroid particles. In order to determine the virtual micro material properties of the polypropylene particles, a calibration method incorporating the design of experiments (DOE) and repose surface methodology was employed. The predicted bulk angle of repose (AOR) derived from the upscaled DEM parameters exhibited a remarkably close agreement with the empirical AOR test, demonstrating a small relative error of merely 1.69 %. Moreover, the CPU time required for the upscaled particle model proved to be less than 71 % of that necessary for the actual-scale model of polypropylene particles. These compelling results confirm the effectiveness of enlarging the particle volume used to calibrate micro-material properties in the Discrete Element Method (DEM) through the DOE technique. This approach proves to be a reliable and efficient method

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Reference44 articles.

1. Cundall, P. A., Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29 (1), 47–65. doi: https://doi.org/10.1680/geot.1979.29.1.47

2. Grima, A., Wypych, P. (2010). Discrete element simulation of a conveyor impact-plate transfer: calibration, validation and scale-up. Australian Bulk Handling Review, 3, 64–72. Available at: https://www.researchgate.net/publication/288811749_Discrete_element_simulation_of_a_conveyor_impact-plate_transfer_Calibration_validation_and_scale-up

3. Grima, A. P., Fraser, T., Hastie, D. B., Wypych, P. W. (2011). Discrete element modelling: Trouble-shooting and optimisation tool for chute design. Beltcon, 16, 1–26. Available at: https://ro.uow.edu.au/eispapers/882/

4. Boac, J. M., Ambrose, R. P. K., Casada, M. E., Maghirang, R. G., Maier, D. E. (2014). Applications of Discrete Element Method in Modeling of Grain Postharvest Operations. Food Engineering Reviews, 6 (4), 128–149. doi: https://doi.org/10.1007/s12393-014-9090-y

5. Chen, C., McDowell, G. R., Thom, N. H. (2012). Discrete element modelling of cyclic loads of geogrid-reinforced ballast under confined and unconfined conditions. Geotextiles and Geomembranes, 35, 76–86. doi: https://doi.org/10.1016/j.geotexmem.2012.07.004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3