Analysis of the hydraulic interference between the baffles and the composite hydraulic structure

Author:

Qasim Rafi M.ORCID,Abdulhussein Ihsan A.ORCID,Hameed Muna A.ORCID

Abstract

The purpose of the present study is to examine the influence of baffles presence at downstream system on weir gate hydraulic response. Two baffles configuration (triangle and angle shapes) are installed in bed flume. Two different spacing are used between the baffles and two different directions for baffles are also adopted. The study tries to investigate the variation in upstream Froude number, downstream Froude number, Reynolds number, actual discharge, discharge coefficient, downstream average water depth and the hydraulic system efficiency which is expressed as function of downstream water depth. It has been shown that the number of baffles has a direct and significant impact on flow hydraulic characteristics of weir-gate structure regardless of the spacing between baffles and the direction of baffles related to flow. Baffles number and spacing have essential impact on the water flow velocity of system and this impact leads to increase the flow resistance. The results clarify that the upstream Froude number, downstream Froude number, Reynolds number, actual discharge and discharge coefficient are decreased with the increase in baffles number except the average downstream water depth which increases with increase in baffles number. The efficiency of hydraulic system gives a good indicator for using baffles with weir-gate structure. At the end this paper shows a fruitful result of efficiency. This experiment run condense on the baffle’s numbers and directions with respect to the water flow direction at the downstream regime. So, the rises in the water level relies on the numbers and directions of the baffles as compare to the case without using baffles at the flume downstream region. The actual discharge and weir-gate discharge coefficient are more sensitive to the increase in the baffles’ numbers and the baffles direction with respect to the water flow direction

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3