The effect of hold-melt time of micro-regime precipitation size and hardness in Al-Cu alloy

Author:

Suprapto WahyonoORCID,Irawan Yudy SuryaORCID,Suparman SudjitoORCID,Amrullah Muhammad RafiORCID,Auliasyah PratamaORCID,Ramdhani Aditya RafiORCID

Abstract

This study aims to control the characterization and mechanical properties of smelting Al-Cu Alloy through Hold-Melt Time. This research uses aluminum scrap and copper wire scrap to produce quality as-cast ingots, clean the environment, and increase waste utilization. Copper melting point of 1083 °C is immersed in molten aluminum at a temperature of 900 °C for 10–30 minutes causing copper to dissolve in aluminum due to smelting events based on diffusion phenomena. Parameters of temperature and immersion time of copper in molten aluminum in this study are expressed by hold-melt time. In the copper aluminum alloy trade, commonly called Duralumin, it is commonly used for impact loads and is heat-treatable. Resistance to cryogenic temperatures, in the future Duralumin has the potential to replace stainless steel. This study used an electric resistance furnace with the specifications for smelting aluminum 3 kg, electric power 2.5–3.0 kW, electric voltage 220 Volts, maximum temperature 1000 °C. It had been conducted an experiment where copper had been melted under its melting point in duralumin ingot casting. In this study, copper pieces were soaked in liquid aluminum with temperature of 900 °C. After 10–30 minutes of holding melt, the soaked copper became Al-Cu alloys and was called molten Duralumin. After the molten duralumin had been cleaned from dross, it was poured into ingot casting. From specific weight test, more soaking time of the copper in liquid aluminum caused specific weight of ingot duralumin increase from 47.08 % to 57.56 % and its hardness increase from 93 to 113 BHN. This study contributes on melting energy saving and improves the characteristic and hardness of ingot aluminum type 2xxx

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3