The proof of Fermat’s last theorem based on the geometric principle

Author:

Gevorkyan YuriyORCID

Abstract

This paper provides another proof of Fermat's theorem. As in the previous work, a geometric approach is used, namely: instead of integers a, b, c, a triangle with side lengths a, b, c is considered. To preserve the completeness of the proof of the theorem in this work, the proof is repeated for the cases of right and obtuse triangles. In this case, the Fermat equation ap+bp=cp has no solutions for any natural number p>2 and arbitrary numbers a, b, c. When considering the case when the numbers a, b, c are sides of an acute triangle, it is proven that Fermat’s equation has no solutions for any natural number p>2 and non-zero integer numbers a, b, c. Numbers a=k, b=k+m, c=k+n, where k, m, n are natural numbers that satisfy the inequalities n>m, n<k+m, exhaust all possible variants of natural numbers a, b, c, which are the sides of the triangle. In an acute triangle, the following condition is additionally satisfied: To study the Fermat equation, an auxiliary function f(k,p)=kp+(k+m)p–(k+n)p, is introduced, which is a polynomial of natural degree p in the variable k. The equation f(k,p)=0 has a single positive root for any natural A recurrent formula connecting the functions f(k,p+1) and f(k,p) has been proven: f(k,p+1)=kf(k,p)-[n(k+n)p-m(k+m)p]. The proof of the main proposition 2 is based on considering all possible relationships between the assumed integer solution of the equation f(k,p+1)=0 and the number  corresponding to this solution The proof was carried out using the mathematical apparatus of number theory, elements of higher algebra and the foundations of mathematical analysis. These studies are a continuation of the author’s works, in which some special cases of Fermat’s theorem were proved

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Reference15 articles.

1. Tanchuk, M. (2016). Rozghadka taiemnytsi dovedennia velykoi teoremy Piera de Ferma. Trysektsiya dovilnykh ploskykh kutiv i kvadratura kruha. Kyiv: DETUT, 34.

2. Cox, D. A. (1994). Introduction to Fermat's Last Theorem. The American Mathematical Monthly, 101 (1), 3–14. doi: https://doi.org/10.2307/2325116

3. Kleiner, I. (2000). From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem. Elemente der Mathematik, 55 (1), 19–37. doi: https://doi.org/10.1007/pl00000079

4. Mačys, J. J. (2007). On Euler’s hypothetical proof. Mathematical Notes, 82 (3-4), 352–356. doi: https://doi.org/10.1134/s0001434607090088

5. Edvards, G. (1980). Poslednyaya teorema Ferma: geneticheskoe vvedenie v algebraicheskuyu teoriyu chisel. Moscow: Mir, 484. Available at: https://books.google.com.ua/books/about/Последняя_теорема_Фер.html?id=swjJOAAACAAJ&redir_esc=y

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3