Experimental investigation of water to air heat exchanger performance as passive cooling strategy on ventilation system in tropical region

Author:

Lapisa RemonORCID,Kurniawan AndreORCID,Jasman JasmanORCID,Yuvenda DoriORCID,Putra Randi PurnamaORCID,Waskito WaskitoORCID,Karudin ArwizetORCID,Krismadinata KrismadinataORCID

Abstract

This experimental study aims to investigate and analyze the performance of a Water-Air Heat Exchanger that functions as passive cooling in a building ventilation system in the tropics. Before being blown into the room, the high-temperature outdoor air will be passively cooled by the lower-temperature water. Air driven by an Inline Duct Fan with a constant mass flow rate of 4.68 cubic meters per minute flows through a PVC hose as a heat exchanger inserted into a full water reservoir with a diameter of 100 cm and a height of 110 cm. A heat exchanger hose with a diameter of 6.35 cm and a length of 4130 cm is installed in a spiral-circular manner with a total of 16 coils with a diameter of 80 cm to increase the heat transfer effectiveness between water and air. The passive cooling effectiveness is analyzed by decreasing the air temperature between the inlet and outlet of the ventilator after passing through the heat exchanger. The temperature, humidity, and daylight measurement data were carried out for 36 consecutive hours using a multichannel data logger at several locations; ventilator inlet, ventilator outlet, water in the tub, and outside air. The measurement results show that the designed water-to-air heat exchanger provides a significant passive cooling effect and can reduce air temperature to 6.88 °C. By utilizing the passive cooling effect, the cooling energy gain obtained during the measurement period in the ventilation system of this building is 8.3 kWh. The methodology and results of this research are expected to make a positive contribution to the development of the concept of energy-efficient buildings by using passive cooling techniques

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3