Proof of the possibility for a public audit of a secret internet voting system

Author:

Khlaponin YuriiORCID,Vyshniakov VolodymyrORCID,Komarnytskyi OlehORCID

Abstract

The aim of this study is to prove the possibility of building a system of secret Internet voting, in which a full-fledged audit is available to all voters and their proxies. A full-fledged audit should be understood as such an audit, in which everything that may be in doubt is checked. The open block of servers was created using Raspberry Pi 3 Model B type minicomputers, which are widely known and well-established. On the basis of an open block of servers, a full-scale model of the system for conducting experimental voting was created and a detailed methodology for a full-fledged audit was developed. This methodology provides for two stages of the audit. In the first stage, voters or their proxies must be present near the server unit. In the second stage, they continue the audit remotely through a dedicated server without losing information about the security of their data. For practical acquaintance with this research, the possibility of experimental voting is given. The experiment can be conducted by anyone at any time through a link on the Internet. Thus, it is shown that not only with traditional secret voting technologies, a full-fledged audit is possible, thanks to which voters have no doubts about maintaining the secrecy of their votes and the honesty of the results. To conduct a full-fledged audit according to the described methodology, it is not require to involve highly qualified specialists, but school education, which is mandatory in many countries, is quite enough. The importance of the results is that the lack of a full-fledged audit of Internet voting systems is the main factor hindering the development of e-democracy. The lack of public auditing of Internet voting systems causes distrust in the possibility of using the Internet to conduct fair elections

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3