Flow distribution analysis of a novel fcc system through experiment study and atomic model

Author:

Siswantara Ahmad IndraORCID,Syafei M. Hilman GumelarORCID,Budiyanto Muhammad ArifORCID,Widiawaty Candra DamisORCID,Syuriadi AdiORCID,Farhan Tanwir AhmadORCID,Permana SulaksanaORCID

Abstract

As the largest palm oil producer in the world, Indonesia has a promising potential to produce green fuel through the Fluid Catalytic Cracking (FCC) process. A novel FCC configuration, FCC Proto X 3, which combines a riser reactor and downer reactor in the system, has been developed. However, several valves including in the FCC system remain a black box to the flow distribution in the system. The objective of this paper is to investigate the effect of the valve setting variation on the airflow distribution of the FCC system. The methodology uses experiment and acausal modeling. The effect of valve setting variation on pressure and average velocity of the airflow has been investigated. The experiment is conducted under cold test conditions, while the acausal model of the FCC system is built by using OpenModelica. It is obtained that valve 2 which controls the flow at the channel toward the regenerator is essential due to its role in controlling the air supply combustion process in the regenerator and driving the spent catalyst particles to the regenerator. Valve 3 is responsible for controlling the flow toward the riser reactor directly. Later, it is responsible for supplying the lifting fluid to support the catalytic cracking reaction at the riser sections. Valve 4 contributes to controlling the lifting fluid to the downer reactor. It will also be responsible for supplying thermal energy from the high-temperature particle catalyst to the reactor. When all valves toward the regenerator and reactor are 100 % open, the measured average velocity at the flue gas outlet and the product outlet are 8.04 m/s and 5.775 m/s respectively. The result shows that the airflow at the FCC system tends to flow through the regenerator. The atomic model estimation also shows a similar trend to the experiment result

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Reference55 articles.

1. The Paris Agreement (2015). UNFCC. Available at: https://unfccc.int/sites/default/files/english_paris_agreement.pdf

2. Sayed, E. T., Wilberforce, T., Elsaid, K., Rabaia, M. K. H., Abdelkareem, M. A., Chae, K.-J., Olabi, A. G. (2021). A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Science of The Total Environment, 766, 144505. doi: https://doi.org/10.1016/j.scitotenv.2020.144505

3. A new world: the geopolitics of the energy transformation (2019). IRENA, 94.

4. Global Energy Transformation: A Roadmap to 2050 (2018). Abu Dhabi: IRENA.

5. Indonesia energy outlook 2019 (2019). Jakarta Sekr. Jenderal Dewan Energi Nas. Indonesian’s National Energy Council.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3